On the Specific Heat of Nonstoichiometric Ceria

I. RIESS

Department of Physics, Technion–Israel Institute of Technology, Haifa 32000, Israel

AND M. RICKEN AND J. NÖLTING

Institut für Physikalische Chemie der Universität Göttingen und Sonderforschungsbereich 126, Göttingen-Clausthal, Tammannstrasse 6, 3400 Göttingen, Federal Republic of Germany

Received July 25, 1984; in revised form October 8, 1984

Ceria (CeO₂) can readily be reduced to form a wide range of binary compounds CeO_y, $2 \ge y \ge 1.5$. Specific heat measurements at constant y were carried out for the composition range $2 \ge y > 1.714$ and for the temperature range 300 K < T < 1200 K. In this y, T region the specific heat exhibits a complex form reflecting various transformations. The results and theoretical evaluations of the specific heat are presented as the temperature is varied from low values ($T \approx 400$ K) where two phases coexist, through several phase transformations to a high temperature α phase. Special features of the specific heat due apparently to increased internal local pressure appearing for small deviations from stoichiometry are also discussed. @ 1985 Academic Press, Inc.

1. Introduction

 CeO_2 is readily reduced at low oxygen pressures and elevated temperatures to form so-called nonstoichiometric compounds CeO_y $(2 \ge y \ge 1.5)$ (1-3). At low temperatures $T \lesssim 722$ K the CeO_v phases form a discrete set of compositions. At elevated temperatures ($T \ge 921$ K, y > 1.818) a single phase CeO_y exists for which y may obtain a continuum of values. We recently presented c_p measurements and a discussion of the phase diagram of CeO_{v} (3) (see Fig. 1). The phase diagram was determined from c_p measurements on CeO_y at constant y. We were interested mainly in the phase diagram and have concentrated on the temperatures and heats of the transformations. It is the purpose of the present work to discuss, in detail, those c_p measurements over a wide temperature and composition range. In the c_p vs T data (for constant y) we identify various regions ordered by increasing temperature. They reflect the two-phase region in which the phases have well-defined compositions; the two-phase region where the composition of one phase is changing with temperature; transformations at fixed temperatures; the binodal line where two phases coexist (e.g., α and α' phases, see Fig. 1) and both change their compositions with temperature; and the high temperature single α phase.

The analysis should contribute to the un-

FIG. 1. The phase diagram of CeO_y.

derstanding of CeO_y and of other reduced materials having similar nature such as PrO_2 and TbO_2 . It refers also to some general features of the specific heat of binary compounds.

2. Experimental

The specific heat was measured in an adiabatic, temperature scanning calorimeter. The composition of the sample was adjusted *in situ* by a gas mixture of H_2/H_2O and determined by weighing. The reader is

FIG. 2. c_p vs T of CeO₂.

referred to Ref. (3) for a detailed description of the experimental procedure.

3. Experimental Results

Figure 2 presents the specific heat of CeO_2 . As the phase does not change on heating (see Fig. 1) the c_p curve is smooth and represents the lattice contributions.

Figure 3 presents the specific heat of CeO_{1.925}. Five regions of interest can be defined (I–V). The phases involved are α , δ ,

FIG. 3. c_p vs T of CeO_{1.925}.

and α' . Their existence range is shown in Fig. 1.

Region I: the low temperature region for which the specific heat is determined by the coexisting phases (α and δ).

Region II: the approach to a phase transition where c_p has an additional contribution due to transformation of small amounts of α phase into δ phase.

Region III: the transformation $\alpha + \delta \rightarrow \alpha + \alpha'$.

Region IV: c_p has the form of a shoulder, and is determined by the coexistence of two phases, α and α' , and both change composition and amount with *T*.

Region V: high temperature singlephase region (α phase).

Figure 4 presents the c_p of CeO_{1.823}. It exhibits three sharp peaks reflecting the three phase transformations at 722, 736, and 767 K (see Fig. 1). Due to overlap, the data between peaks cannot be resolved and only information on the transitions can be obtained. The same difficulty arises with all c_p measurements exhibiting several phase transformations. Therefore, for clarity, we shall discuss mainly c_p with one transformation as is shown in Fig. 3, measured for $y > y_e = 1.846$.

4. Analysis and Discussion

4a. Basic Specific Heat

For analysis of the data it is convenient to separate the c_p values into two parts denoted as the basic specific heat c_p^* (see Fig. 3) and the difference $c_p - c_p^* = \Delta c_p$ which is denoted as the excess specific heat. c_p^* represents the contributions due to lattice vibrations but it does not include the heat effects due to phase transformations. The latter contributions are included in Δc_p . In particular for a single phase in equilibrium Δc_p vanishes.

At temperatures high with respect to the Debye temperature, θ_D , the basic specific heat can be written as (4),

$$c_p^* = a - \frac{c}{T^2} + bT,$$
 (1)

which originates from the high temperature Debye specific heat and the anharmonic effects. For CeO₂ the constants are a = 67.95, b = 0.0125, and $c = 9.9 \times 10^5$ where T is in K and c_p in Joule (mole K). If the constant c is interpreted as

$$c = \frac{1}{12}a\theta_{\rm D}^2 \tag{2}$$

then the data for CeO₂ yield a rough estimate for θ_D : $\theta_D = 410$ K. The c_p values for CeO_2 agree with those of others within 2% (5-8). For CeO_{1.818} (δ phase at $T \le 736$ K) one would expect Eq. (1) to hold separately in regions I and V (see Fig. 3). It turns out, however, that a single curve can be fitted to the c_p data of CeO_y with composition close to y = 1.818 for both region I and the high temperature side of region V (see Figs. 3, 4). The basic specific heat of $CeO_{1.818}$ when expressed by Eq. (1) for all temperatures has a = 67.04, b = 0.0140, and $c = 9.9 \times$ 10^5 . For intermediate compositions 2.00 > $y > 1.818 c_p^*$ was calculated as a linear combination of the basic specific heat $c_{p,2}^*$ of $CeO_{2.000}$ and $c_{p,1}^*$ of $CeO_{1.818}$ (regardless of the actual composition of the α phase which may deviate somewhat from CeO₂ above 560 K):

$$c_p^*(y) = x_2 c_{p,2}^* + x_1 c_{p,1}^*$$
 (3a)

where

$$x_1 = \frac{2 - y}{2 - 1.818}, \qquad x_2 = \frac{y - 1.818}{2 - 1.818}$$
 (3b)

are the calculated mole fractions of CeO_{1.818} and CeO_{2.000}, respectively. This can be justified in region I and is plausible also in region V. We then assume that $c_p^x(y)$ can be used for all temperatures.

4b. Region I

In the low temperature region T < 560 K and for the composition range $2 \ge y \ge 1.818$ the material can be considered as a mixture of the two phases $\text{CeO}_2(\alpha)$ and $\text{CeO}_{1.818}(\delta)$. The specific heat is therefore a linear combination of the specific heat of these two phases. It is equal to c_p^* and can be expressed by Eq. (3). In doing so we have neglected possible contributions to c_p due to interactions between the two phases at the α, δ grain boundaries. Microscopic observations on the used sample show grain sizes between 10^{-6} and 5×10^{-6} m.

The difference in c_p^* of CeO_{2.000} and CeO_{1.818} in regions I and V is seen in Fig. 5. For low temperature $c_{p,2}^*$ is greater than $c_{p,1}^*$. This difference decreases with T. The difference could be understood qualitatively on the basis of the smaller number of anions in the δ phase. However the difference observed is smaller by a factor 4 than that calculated from the Dulong-Petit relation. With increasing temperature we would expect the difference to increase to approach that of Dulong-Petit. As the opposite occurs we conclude that the material is far from its high temperature limit behavior and that oxygen vacancies in the reduced material introduce low-lying energy levels that are excited in the measured temperature range.

4c. Region II

For $y \leq 1.93$ the specific heat for $T \leq 670$ K follows practically c_p^* . For $y \ge 1.93$, c_p is larger than c_p^* for $T \ge 560$ K. This is shown in Figs. (6, 7) for y = 1.998 and y = 1.982, respectively. The basic specific heat was calculated as shown in section 4.a. Equation (3) would represent c_n^* if the composition of the α and δ phase did not deviate from CeO_{2.000} and CeO_{1.818} respectively. However the composition range of the α phase becomes broader for T > 560 K. This is shown in Fig. (8). On the other hand the composition range of the δ phase is quite narrow. Hence for $2 \ge y \ge 1.818$ as T increases (720 K $\gtrsim T \gtrsim$ 560 K) the α component changes its composition and amount; some of it transforms into the δ phase. This process is associated with heat of transformation which contributes to c_p . As y decreases, the fraction of the α phase and its contribution to c_p decrease as well. For $y \leq$ 1.94 the deviation of c_p from c_p^* can no longer be observed in our measurements.

FIG. 6. c_p vs *T* for CeO_{1.997}. \bigcirc , measurements; light solid line, calculated c_p^* ; heavy solid line, calculated c_p ($c_p = \Delta c_p + c_p^*$).

FIG. 7. c_p vs T for CeO_{1.982}. O, measurements; light solid line, calculated c_p^* ; heavy solid line, calculated c_p ($c_p = \Delta c_p + c_p^*$).

We have calculated Δc_p using the α -phase boundary line shown in Fig. 8. The method used is similar to that applied in discussing region IV and will be presented in Section 4e. The results are shown in Figs. 6, 7. The calculations show that this heat effect does not explain the whole observed deviation from c_p^* (for 1.994 > $y \ge 1.96$).

4d. Region III

Region III is the temperature range in which the phase transformation occurs.

4d.1. Enthalpy of transformation. The enthalpy of transformation L is represented by the area under the peak above c_n^* (see Fig. 3). Its determination was discussed before (3). L changes with the ratio of the two phases undergoing the transformation. Figure 9 shows L at 722 K as a function of composition. The data were fitted with two straight lines as required by the following calculations. At the transformation the α and δ phases coexist with the α' phase of the eutectic composition, e. Let H_{α} , H_{δ} , and $H_{\rm e}$ be the molar enthalpies of the three corresponding phases α , δ , and eutectic α'_{e} at 722 K.¹ The heat of transformation is the difference of enthalpies before and after the transformation. For compositions $y_{\alpha} > y >$ y_e ($y_e = 1.846$, eutectic composition, $y_\alpha =$ 1.994 (2, 3)),

¹ For brevity the symbols H_i were used instead of ΔH_i . The reader should keep in mind that these enthalpies are fixed values, corresponding to the three-phase equilibrium at 722 K. Only differences of these enthalpies appear in the final relations (6, 7).

FIG. 8. Expanded section of the phase diagram of CeO_y. It exhibits the existence range of the α phase close to 700 K and the depression of the temperature of the transformation $\alpha + \delta \rightarrow \alpha + \alpha'_e$ below 722 K for $y \ge 1.96$ due to nonequilibrium effects (increased local pressure) (dashed line).

$$L = x_{\alpha}^{+}H_{\alpha} + x_{e}H_{e} - x_{\alpha}^{-}H_{\alpha} - x_{\delta}H_{\delta} \quad (4)$$

where x_{α}^{+} , x_{α}^{-} , x_{δ} , x_{e} represent the molar fractions, and x_{α}^{+} and x_{α}^{-} denote the α -phase molar fraction just above and below the transformation, respectively. By the lever rule,

$$x_{\alpha}^{-} = (y - y_{\delta})/(y_{\alpha} - y_{\delta})$$
 (5a)

$$x_{\delta} = (y_{\alpha} - y)/(y_{\alpha} - y_{\delta}) \qquad (5b)$$

FIG. 9. Heat of transformation L vs composition y for the eutectic transformation at 722 K.

$$x_{\alpha}^{+} = (y - y_{e})/(y_{\alpha} - y_{e})$$
 (5c)

$$x_{\rm e} = (y_{\alpha} - y)/(y_{\alpha} - y_{\rm e}).$$
 (5d)

Inserting Eqs. (5a)-(5d) into Eq. (4) yields

$$L = (y_{\alpha} - y) \left[\frac{H_e - H_{\alpha}}{y_{\alpha} - y_e} + \frac{H_{\alpha} - H_{\delta}}{y_{\alpha} - y_{\delta}} \right],$$
$$y_{\alpha} \ge y \ge y_e. \quad (6)$$

L is linear in y. For $y_e \ge y \ge y_\delta$ a similar derivation yields

$$L = (y - y_{\delta}) \left[\frac{H_{e} - H_{\delta}}{y_{e} - y_{\delta}} + \frac{H_{\delta} - H_{\alpha}}{y_{\alpha} - y_{\delta}} \right],$$
$$y_{e} \ge y \ge y_{\delta}. \quad (7)$$

L is linear in y. The straight lines in Fig. 9 are based on Eqs. (6) and (7), which are not independent. Hence from the two measured slopes one relation among H_{α} , H_{e} , and H_{δ} can be determined. H_{e} can be obtained taking into account thermodynamic measurements in the high temperature α phase. Further considerations of this relation will therefore be continued in the discussion of region V.

4d.2. Nonequilibrium due to increased local pressure. For $y \ge 1.96$ the temperature of the eutectic (e) transformation $\alpha + \delta$ $\rightarrow \alpha + \alpha'$ is lower than 722 K. The deviation is about 25 K at $y \approx 1.995$, decreasing with smaller y and vanishing at $y \approx 1.96$. This nonequilibrium effect depends on the sample preparation and previous temperature treatment. Further discussion is necessary since this effect does appear in other systems as well and cannot always be avoided.

Let us follow cooling of CeO_y , $y_\alpha > y > 1.97$, from the high temperature α phase through the binodal and the α, α' coexistence region toward the eutectic transformation at ~722 K. At the binodal temperature a small amount of the α' phase segregates within the α phase as small grains. As the free molar volume of α' phase is larger than that of the surrounding α phase (2) in-

creased local pressure is exerted on the α' grain. When the cooling through the binodal is completed the pressure on a grain has reached p_0 and the temperature T_0 . The values of p_0 and T_0 may vary from grain to grain. The difference in the molar volumes of α, α' phases, is approximately proportional to the composition difference $y_{\alpha} - y'_{\alpha}$ (2). The pressure on the enclosed α grain increases therefore if T is lowered. This results in a smearing of the shoulder in c_p (see Fig. 7).

It is only near $y \approx 1.93$, $T \approx 922$ K, i.e., the maximum of the binodale, that the internal pressure can be assumed uniform and at 1 atm because only there (a) α and α' appear in comparable amounts and can hardly exert pressure on each other and (b) the difference in molar volume is negligible. As a consequence the decline of the shoulder in c_p is sharp. This was observed in the experiments (3) (see Fig. 3).

The α' grain may be considered in local equilibrium under the elevated pressure at a given temperature. We may then apply the Clausius-Clapeyron equation to the α'_e grain

$$dp/dT = \Delta H/(T\Delta V) \tag{8}$$

and use it for the $\alpha + \delta \rightarrow \alpha'_{e}$ (eutectic) transformation. ΔH is the enthalpy change per mole α'_{e} phase and ΔV is the corresponding molar volume change. Since ΔH > 0 and $\Delta V < 0$, under increased pressure the transformation temperature is lowered.

One may assume that the difference in pressure p_0 on the various α' grains is not large. Using Eq. (8) with $\Delta H = 1600$ J/mole (3) and $\Delta V = -1.5\%$ of the molar volume (2, 9) (0.3 cm³/mole) yields for T = 722 K and $\Delta T = -25$ K a roughly estimated local pressure p_0 of 1 kbar.

4e. Region IV

In region IV Δc_p has the shape of a shoulder. It represents the transformation along the binodal line. For $1.994 \ge y \ge y_e$

and 921 K $\geq T \geq$ 722 K a two-phase system exists and we use the indexes α' and α to characterize the right and left side of the miscibility gap, respectively. The molar enthalpy of the α side is $H^{\alpha} = H^{\alpha}(T, y^{\alpha})$ and

$$\frac{dH^{\alpha}}{dT} = \left(\frac{\partial H^{\alpha}}{\partial T}\right)_{y^{\alpha}} + \left(\frac{\partial H^{\alpha}}{\partial y^{\alpha}}\right)_{T} \frac{dy^{\alpha}}{dT}.$$
 (9)

A similar equation holds for the α' side.

With y and T in the miscibility gap the compositions of the two sides are fixed on the binodal line; i.e., y^{α} and $y^{\alpha'}$ are now defined functions of T given by the binodal line. In this region the total enthalpy can be written as

$$H = x^{\alpha}H^{\alpha} + x^{\alpha'}H^{\alpha'}, \qquad (10a)$$

with

$$x^{\alpha} = \frac{y - y^{\alpha'}}{y^{\alpha} - y^{\alpha'}}, \qquad x^{\alpha'} = \frac{y^{\alpha} - y}{y^{\alpha} - y^{\alpha'}}.$$
 (10b)

c_p is

$$c_{p} = \frac{dH}{dT} = \frac{dx^{\alpha}}{dT} (H^{\alpha} - H^{\alpha'}) + x^{\alpha'} \frac{dH^{\alpha'}}{dT} + x^{\alpha} \frac{dH^{\alpha}}{dT}$$
(11)

with H^{α} and $H^{\alpha'}$ functions of T along the binodal line $(H^{\alpha} = H^{\alpha}(T, y^{\alpha}(T)), H^{\alpha'} = H^{\alpha'}(T, y^{\alpha'}(T))).$

Combining Eqs. (9), (10a), and, (11) yields

$$c_{p} = \frac{dx^{\alpha}}{dT} (H^{\alpha} - H^{\alpha'}) + x^{\alpha} \frac{dy^{\alpha}}{dT} \left(\frac{\partial H^{\alpha}}{\partial y^{\alpha}}\right)_{T} + x^{\alpha'} \frac{dy^{\alpha'}}{dT} \left(\frac{\partial H^{\alpha'}}{\partial y^{\alpha'}}\right)_{T} + x^{\alpha} \left(\frac{\partial H^{\alpha}}{\partial T}\right)_{y^{\alpha}} + x^{\alpha'} \left(\frac{\partial H\alpha'}{\partial T}\right)_{y^{\alpha'}}.$$
 (12)

The first three terms reflect the effect of change in composition and are identified as Δc_p which represents the shoulder. The last two terms of Eq. (12) are identified as the basic specific heat:

$$c_p(\text{basic}) = x^{\alpha} \left(\frac{\partial H^{\alpha}}{\partial T}\right)_{y^{\alpha}} + x^{\alpha'} \left(\frac{\partial H^{\alpha'}}{\partial T}\right)_{y^{\alpha'}} \quad (13)$$

i.e.,

$$\Delta c_p = c_p - c_p \text{ (basic).} \tag{14}$$

When $x^{\alpha} = 0$, $x^{\alpha'} = 1$ or $x^{\alpha} = 1$, $x^{\alpha'} = 0$, c_p (basic) coincides with c_p^* . c_p (basic) of Eq. (13) for y is therefore a linear combination of c_p^* of two other compositions y^{α} and $y^{\alpha'}$. On the other hand, c_p^* was found to be linear in composition (Eq. (3)). $c_p^*(y)$ can therefore be presented as a linear combination of c_p^* of any two other compositions with the appropriate molar fractions. Hence $c_p^*(y)$ equals c_p (basic) of Eq. (13),

$$c_p(\text{basic}) = c_p^*, \tag{15}$$

for all temperatures in region IV. In calculating c_p we therefore use Eq. (3) instead of Eq. (13) for c_p (basic) but calculate Δc_p from the first three terms in Eq. (12).

To calculate Δc_p we notice that

$$\left(\frac{\partial H}{\partial y}\right)_{T} = -\frac{1}{2} \left[\overline{H}(O_{2}, y, T) - H(O_{2}, T)\right]$$
(16)

where $\overline{H}(O_2, y, T)$ is the partial molar enthalpy of O_2 in CeO_y, i.e., the enthalpy of solution of one mole O_2 in CeO_y at *T*. $H(O_2, T)$ is the molar enthalpy of O_2 at *T*. For $T_1 >$ 921 K,

$$H(y^{1}, T_{1}) - H(y^{2}, T_{2}) = \frac{1}{2} \int_{y^{1}}^{y^{2}} [\overline{H}(O_{2}, y, T_{1}) - H(O_{2}, T_{1})] dy.$$
(17)

 $H^{\alpha} - H^{\alpha'}$ at $T_2 < 921$ K can be obtained from Eq. (17) if one adds the difference of integrals of c_p along the temperature interval $(T_1 - T_2)$ for compositions $y^1 = y^{\alpha}(T_2), y^2$ $= y^{\alpha'}(T_2)$. This difference, however, was found to be small and can be neglected. Inserting Eqs. (12), (13), (16), and (17) into Eq. (14) yields

$$\Delta c_p = \frac{dx^{\alpha}}{dT} \frac{1}{2} \int_{y^{\alpha}}^{y^{\alpha'}} \overline{H}(O_2, y, T) \, dy$$
$$- x^{\alpha} \frac{dy^{\alpha}}{dT} \frac{1}{2} \overline{H}(O_2, y^{\alpha}, T)$$
$$- x^{\alpha'} \frac{dy^{\alpha'}}{dT} \frac{1}{2} \overline{H}(O_2, y^{\alpha'}, T) \quad (18)$$

FIG. 10. c_p vs T in region IV (the shoulder). \bigcirc , measurements; light solid line, calculated c_p^* ; heavy solid line, calculated c_p ($c_p = \Delta c_p + c_p^*$) using the partial molar enthalpy of O₂ from Bevan and Kordis (1); broken heavy solid line, calculated c_p ($c_p = \Delta c_p + c_p^*$) using the partial molar enthalpy of O₂ from Campserveux and Gerdanian (10).

where the terms containing $H(O_2, T)$ cancel.

We have used $H(O_2, y, 1353 \text{ K})$ from Bevan and Kordis (1) and from Champserveux and Gerdanian (10). The shape of the binodal was taken from Fig. 3. (It differs somewhat from that in Ref. (3) though it is based on the same data. It was determined from the temperature corresponding to the middle of the right-hand slope of the shoulder in c_p rather than from the temperature of the peak of the shoulder. The maximum of the binodal is now at y = 1.934 and T =921 K.) The fitting of Eq. (18) to the experimental c_p data is shown in Fig. 10.

It was found that the use of $H(O_2, y, 1353 K)$ from Bevan and Kordis (1) gives a better fit to c_p than that from Champserveux and Gerdanian (10) over a wide range of compositions. In more recent measurements (11) the latter authors have found agreement with the result of the free energy of Bevan and Kordis used to determine $\overline{H}(O_2, y, T)$. $\overline{H}(O_2, y, T)$ from Bevan and Kordis therefore must be considered and

the fitting of Eq. (18) to our data is satisfying. Equation (18) represents Δc_p due to a gradual change in the composition of one or two coexisting phases. It therefore holds, for example, also for the transformation α' $\leftrightarrow \delta$ as T varies in the range 736 K > T > 722 K and the composition is 1.846 > y >1.818. Equation (18) was also applied in discussing region II for the α , δ coexistence at 560 K < T < 722 K where α changes its composition with T (see Figs. 6, 7 and the discussion in Sect. 4c).

4f. Region V

In region V the sample is in the high temperature α phase. The measurements were carried out in a rather limited temperature range sufficient to determine the phase diagram (3). We have already used the c_p data in region V to determine c_p^* in Section 4a. Δc_p observed just beyond the shoulder is expected to originate from short range order.

We shall now discuss the calculation of the enthalpy at the eutectic, H_e , and of the δ phase, H_{δ} , from a knowledge of H_{α} at 722 K, $\overline{H}(O_2, y, T)$ at 1353 K, c_p^* , and the heat of transformation L. H_e can be obtained from H_{α} if the following path in the phase diagram is followed: For composition y_{α} increase the temperature from 722 to 1353 K, where $\overline{H}(O_2, y, 1353 \text{ K})$ is known (1). Then change y to the eutectic composition y_e and finally cool to 722 K. Taking H_{α} from the literature (2), c_p from c_p^* (Eq. (3)), and $\overline{H}(O_2, y, 1353 \text{ K})$ from Bevan and Kordis (1) yields $H_e = (-989 \mp 2)$ kJ/mole at T =722 K.

We have shown in Section 4d, Eqs. (6) and (7), that H_{α} , H_{e} , and H_{δ} at 722 K are interrelated. From the slope in Fig. 9 and the values of H_{α} and H_{e} we find $H_{\delta} = (-978 \pm 2)$ kJ/mole at 722 K. H_{δ} at 298 K is calculated using C_{ρ}^{*} : $H_{\delta} = (-1006 \pm 2)$ kJ/ mole. This is in agreement with the calculated value of $H_{\delta} = -1033$ kJ/mole by Westrum (13).

5. Concluding Remarks

We analyzed c_p measurements of reduced ceria (CeO_y) for the temperature range 400 K $\lesssim T \lesssim 1000$ K and composition range 2.000 > y > 1.818. c_p was separated into a basic specific heat, c_p^* , and an excess one, Δc_p , reflecting the excess enthalpy associated with phase transformations due to changes in oxygen content. In the low temperature range $c_p(y)$ is a linear combination of the values of the coexisting phases α and δ , the latter having a narrow composition range. For higher temperatures Δc_p was calculated as gradual changes in the oxygen content of the phases evolved with T. The composition dependence of the enthalpy of transformation, L, of three coexisting phases occurring at a single temperature (e.g., $\alpha + \delta \rightarrow \alpha + \alpha'$) was calculated and shown to be linear in y. It was used to find a relation among the molar enthalpies of the three coexisting phases. Deviations of the eutectic transformation temperature from a single value 722 K for large y were interpreted as due to pressure exerted on isolated α' grains in the α matrix. The gradual transformation of the α and α' compositions separated by a miscibility gap was shown to result in a shoulder-shaped excess c_p .

Further c_p measurements are underway for a detailed determination of c_p in the high temperature α phase. The pressure effect near 722 K will also be examined, and its dependence on sample preparation conditions will be determined. Dilatometry and X-ray diffraction measurements are being utilized.

References

- D. J. M. BEVAN AND J. KORDIS. J. Inorg. Nucl. Chem. 26, 1509 (1964).
- 2. G. BRAUER AND K. A. GINGERICH, J. Inorg. Nucl. Chem. 16, 87 (1960).
- 3. M. RICKEN, J. NÖLTING, AND I. RIESS, J. Solid State Chem. 54, 89 (1984).
- H. SCHMALZRIED AND A. NAVROTSKY, "Festkörperdynamik, Chemie des festen Zustandes," p. 103, Weinheim, (1975).
- T. S. YASHVILI, D. SH. TSAGAREISVILI, AND G. G. GVELESIANI, Soobshch. Akad. Nauk Gruz. SSR, 46, 409 (1968); Chem. Abstr. 68, No. 90481, (1968).
- E. G. KING AND A. U. CHRISTENSEN, U.S. Bur. Mines Rep. Invest., Nr. 5789, 4, (1960).
- 7. C. E. HOLLEY, E. J. HUBER, AND F. B. BAKER, Prog. Sci. Technol. Rare Earths 3, 343 (1968).
- F. A. KUTZNETSOV, V. I. BELYI, T. N., RE-ZUKHINA, AND YA. I. GERASIMOV, Dokl. Akad. Nauk SSR 139, 1405 (1961); Proc. Acad. Sci. USSR Phys. Chem. Sect. 136/141, 642 (1961).
- 9. H. T. ANDERSON AND B. J. WUENSCH, in "Fast Ion Transport in Solids" (W. van Gool, Ed.) p. 284, Elsevier, Amsterdam (1973).
- J. CAMPSERVEUX AND P. GERDANIAN, J. Chem. Thermodyn. 5, 795 (1974).
- 11. J. CAMPSERVEUX AND P. GERDANIAN, J. Solid State Chem. 23, 73 (1978).
- 12. F. B. BAKER, E. J. HUBER, AND C. E. HOLLEY, J. Chem. Thermodyn. 3, 77 (1971).
- 13. E. F. WESTRUM, Adv. Chem. Ser. 71, 25 (1967).